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Research related to advanced nuclear rocket propulsion is described
herein. This work was performed under NASA Grant NGR-14-004-008 with
Mr. Maynard F. Taylor, Nuclear Systems Division, NASA Lewis Research
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CHAPTER 1

INTRODUCTION

Confined jet mixing occurs in many devices of practical
interest, such as the jet pump or air-to-air ejector, composite
propulsion systems as the air augmented rocket, diffusion flames
in ducted furnaces, gaseous core reactors for nuclear rocket
engines and several fluidic devices. The flow phenomenon in
such systems may be laminar or turbulent, depending on the
values of the parameters of the system. The parameters of
significance in this aspect are the ratios of the initial
Qelocities, densities and radii of the two streams as well as
their Reynolds numbers. The laminar case has been analysed in
Reference 1; the effect of turbulence in confined jet mixing
flows is considered here in the present report.

The present study is directed towards the flow phenomenon
occurring in gas-core rocket engines. Therefore, the system con-
sidered consists of a central jet of a slow-moving heavy gas and
a coflowing annular stream of a fast-moving light gas. Figure 1
illustrates the behavior of such a jet stream in an axisymmetric
duct of circular cross-section. - Essentially, two idealized

regions of flow may be identified.
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The first regibn extends up to the downstream position where
the inner jet fluid mass fraction at the wall first reaches a small pre-
scribed value. This value was chosen arbitrarily as 2% of the
entrance mass fraction ®y of the inner jet. The flow phenomenon
in this region is highly complex. For a short distance downstream
of the entrance section, there exists a central core, termed the
"potential core," wherein the centerline velocity or the centerline
mass fraction or both have undergomne no significant depletion.*
Separated from this potential zone in the radial direction by a thin
shear layer, there also exists a potential zone in the outer stream
flow. Large velocity and density gradients prevail in the inter-
mediate shear layer. The thickness of this shear layer increases
with distance downstream and quickly erases all of the potential
flow zone of the low velocity central jet. The outer potential
zone is bounded by the boundary layer at the wall, When the outer
stream is fgster than the inner, the outer potential zone extends
further downstream than the central potential zone. Beyond the
end of the outer potential core, the mixing phenomenon is further

complicated due to the interaction of the wall boundary layer with

the inmer jet.,

* The potential core for velocity may be defined as the region
where the axial velocity has changed by less than 0.05 (U2 - Ul)
from its value at the entrance section.

The potential core for mass fraction may be defined as the
region where the mass fraction has changed by less than 5% of its
value at the entrance section.



Region 1 is often referred to as the initial region. In this
initial region, the fast moving stream entrains fluid from the slow
moving stream and recirculation phenomena occur if the entrainment
capacity of the high velocity stream exceeds the amount of fluid
supplied by the low velocity stream. The interest of the present

work lies in the initial region for cases where recirculation is absent.

In the second region, mixing and shear flow occupy the entire
cross-section of the duct. This region is frequently referred to as

the main region.

A survey of the pertinent literature was carried out and is
presented in the next section. It will be seen from this survey that
turbulent confined mixing has been studied for incompressible as well
as compressible cases, but most of the investigations are limited to
configurations with the inner jet velocities much greater than the
outer stream velocities and the inner jet radius very small as com-
pared to the confining tube radius. For such configurations, the
effect of the confining wall is insignificant in the near region and,-
when recirculation is absent, the flow phenomenon here is similar to
the cases of tﬁe free jet in a moving secondary stream. On the other
hand, in the configurations of present interest, the outer stream is
much faster than the central jet and the radius ratio is such as to
induce prominent effect due to the presence of the confining wall.
Significant density variations are also present. Only the.experi-

2%
ments of Leithem, Kulik and Weinstein™ come in this category and their
recent data are ytilized in the present analytical investigation of

turbulent confined jet mixing.

* Superscripts denote References.



1.1 Literature Survey

The analyses avallable for confined turbulent jet mixing
involve several simplifying assumptions, and integral techniques
are used in general to obtain the solutions. In most of theée
analyses, the velocity v, and the shear stress T were assumed
to obey similarity laws, so that expressions for the eddy viscosity
€, and the eddy diffusivity €, Were not needed. In 1955, Craya
and Curtet3 established an approximate theory for confined jet mix-
ing of streams of identical composition. This theory was further
developed by CurtetA’5 and was followed by additional theoretical
and experimental studies by Curtet and Ricou6 and Curtet and
Barchilonz The theoretical analysis was based on the assumptions
of zero radial pressure gradient, uniform and non-turbulent axial
velocity outside the mixing region, and similarity of the axial
velocity profiles inside the mixing region. Experimental obser-
vations led to the assumption of similar Gaussian velocity profiles
in the developing region. Using these assumptions, the governing
differential equations were integrated by a momentum integral
t echnique., This approximate analysis resulted in a similitude

parameter referred to as the Curtet number Ct* by Becker et al?

*




' This parameter is in fact an expression relating the nozzle and the
duct radii and the primary and the secondary flows at inlet, and
remains almost constant for the jet mixing flow. This parameter was
claimed to play an essential role in the physics of confiﬁed jet mixing
and it was proposed that if the primary jet were replaced by an ideal-
ized point source, then the similitude parameter alonme would govern the
mixing in the duct. However, this theoretical analysis loses all
physical significance in the presence of recirculation which was
observed to occur in the initial region of the secondary stream when
the outer stream velocity was decreased below a certain low value,
keeping the inner stream velocity approximately constant. Further
exper iments were conducted in order to improve the assumptions made

in the approximate theory and thereby extend its applicability to the
region downstream of the recirculation eddy in the confined jet mixing
flow. These experiments made it possible to characterize the mean
structure of the recirculation eddy in terms of the similitude para-
meter Ct' The assumptions of absence of drag at the confining wall
and unidirectional flow in the initial region of the secondary stream

were still used, so that the results are yet only approximate.

In 1965, Hillg’lo carried out analytical studies of an isothermal
homogeneous confined jet mixing sys;em in order to predict the mean
velocity field in the flow. In this analysis also, an integral tech-
nique was used and the shear integrals were evaluated using free.jet
data. A potential uniform stream was assumed to extend up to the

confining wall in the near region where the central jet did not yet

reach the wall. This implies that, at the wall, the shear stress and



the boundary layer were assumed negligible, i.e.,the effects of a
confining wall were not significantly taken into consideration,
Approximate self-preservation of the jet flow in the near region

was assumed for cases where the jet velocity exceeded that of the

outer stream, It was felt that the primary jet potential core could be
conceptually replaced by a point source with a virtual origin located
approximately in the nozzle exit plane. For cases with recirculation,
the static pressure was assumed constant even in the recirculation
region, so that the flow external to the inner jet was uniform even
when the flow there was reversing. This enabled to retain the
relation between the pressure gradient and the velocity gradient in
the recirculation region. This approximate analysis led to the formu-
lation of a momentum parameter, referred to later by Exley11 as the
Hill parameter Hp*, which characterized the flow in terms of specified
initial conditions. It was pointed out, however, that the assumptions

made in the recirculation region were inadequate,




Exley11 and Becker et a18 studied confined jet mixing
analytically as well as experimentally, but these studies were
directed towards investigation of the separation and recirculation
phenomena occurring in such flows, Exley carried out a detailed
study of the Curtet number and the Hill parameter and suggested
that, when the potential core disappears before the jet spreads
to the boundary layer at the wall, ﬁhe Curtet number and the Hill
parameter adequately predict the characteristics of the flow in
terms of specified inlet conditions. The analysis suggested by
Becker et al8 is similar to that of Curtet and the results are
presented in terms of the Curtet parameter. The experimental data
of Becker et al showed that the flow pattern of a confined turbulent
jet can differ profoundly from that of a free jet, especially in
regions of the large recirculation which occurs under the operating
conditions of many industrial furnaces.

12,13 studied the effects of conditions at the inlet on

Dealy
the flow phenomena in a confined jet mixing system. Dealy concluded
that, for systems with low jet-to-confining tube radius ratio, the
flow in the near region is indeed independent of the nature of the
jet source, has similar velocity profiles and is amenable to analysis
by the common momentum integral technique., But for large jet=~to-
confining tube radius ratios, the mixing mechanism was found to be
dependent strongly on the flow conditions in the jet stream, This

led to the following useful conclusion regarding Curtet's analysis.

In Curtet's analysis, potential flow was assumed to exist near the



turbulent efflux from a long tube., Hence, Curtet's analysis may not
effectively predict the characteristics of the flow in confined jet
systems with large radius ratios. Rl/R for which Dealy's experi-
ments ﬁredict dependence of thé flow characteristics on the. inlet
conditions. Further experiments by Dealy also showed that, for
fully developed turbulent flow at the jet source, the flow in the
near region is primarily a function of the jet Reynolds number.
Also, this flow develops more rapidly because of larger turbulent
stresses than for the case corresponding to a uniform flow at the

jet source,

Trapani14 carried out an experimental study of turbulent
jets with solid boundaries in the transverse direction, in order
to investigate their application in certain fluidic devices.
Comparison with the flow characteristics of a two-dimensional tur-
bulent free jet showed that the presence of solid transverse boun=-
daries definitely alters the behavior of the flow. The bounded
jet (i.e., the jet bounded by plates above and below) was seen to
spread less rapidly than the free jet, On the other hand, the
confined jet (i.e., the jet enclosed on the top, bottom and the
sides) wa; observed to spread more rapidly than the free jet;
this effect was attributed to the development of an adverse axial

pressure gradient in the confined jet flow.

One of the few works on confined turbulent mixing with radius
ratio Rl/R as large as 0,26 is due to Mikhail15 who performed ex-

perimental as well as theoretical analyses for incompressible



isothermal sfreams of identical composition. However, even for
this radius ratio, the shear stress at the wall was neglected.
An integral method was used to analyse the low speed flow in a
constant area jet pump. The non-dimensional velocity profiles
were assumed to be similar in the entire mixing region and were
represented by a cosine function. Experiments confirmed the
existence of similarity in the main region ( the regions as
defined in Fig. 1 ) and it was concluded that the analysis
adequately predicts the gross behavior of the mixing region.

An extensive study of the ducted turbulent mixing process
for supersonic flows was carried out by Peters et 31.16’17’18’19
experimentally as well as analytically. The experimental results
are presented for a rocket-air mixing system which is typical of
the air-~augmented rocket. An integral theory for the ducted flow
is presented for arbitrary axisymmetric duct geometry and for either
frozen or equilibrium chemistry in the mixing zone. The usual
boundary layer approximations were assumed to be applicable in the
mixing layer which was treated as fully turbulent. At initiation
of mixing. the boundary layer was considered negligible as were the
viscous effects at the duct wall. Thus, the inviscid portion of
the outer stream was one-dimensional and isentropic, while the
inviscid portion of the primary jet was also isentropic. The
velocity profiles in the turbulent wixing zone were assumed to be
similar and were represented by a cosine fuunction. The turbulent

shear stress in this variable density mixing layer was treated by

10



the use of a modified Prandtl eddy viscosity model, The free
mixing concept of shear and the velocity profile siﬁilarity were
assumed to Be applicable in the main region also (regions as
defined in Fig. 1). The turbulent Prandtl and Lewis numbers of
unity were used in the analysis. Frém the results of analysis

and experiment, it was concluded that, while the current know-
ledge about turbulent flows with chemical reaction is meager, the
integral method developed permits reasonably accurate computations
of the flow in complex mixing systems such as air-air ejectors and

air-augmented rockets.

Emmons20 also developed an analysis for predicting the flow
characteristics in the mixing region of a particle-laden turbulent
rocket exhaust and the surrounding air stream (thé air-augmented
rocket). Neglecting the boundary layer at the confining wall, the
turbulent boundary layer equations were used to describe the flow
in the mixing system. The eddy viscosity model was assumed to vary
with the streamwise coordinate. Finite rate chemistry was con-
sidered in the mixing region, although a greatly simplified reaction
model was used, The system of partial differential equations
governing the flow was transformed using the von Mises transforma-
tion and then solved by finite difference methods. The boundary
layer equations were also used by then?1 and Edelman and Fortune22
in their finite difference analysis of turbulent mixing and combus=~

tion of ducted compressible streams,

11



Leithem, Kulik and Weinstein2 carried out an experimental
investigation of confined turbulent jet mixing for the homogeneous
as well as heterogeneous cases. These are the only available
experiments with outer stream faster than the inner jet. The flow
system consisted of a 3-in. diameter inner stream issuing into a;
6~in. diameter confining duct. Air was used for the outer stream
while the inner jet consisted of air for the homogeneous case and
Freon~12 for the heterogeneous case with density ratio pl/p2 = 4,2,
The velocity ratio U2/U1 ranged from 4.90 to 30.0 for both cases,
with absolute values of U2 varying from 1.5 ft/sec to 40 ft/sec.
All data were taken with a constant temperature hot wire anemometer
system. The results were presented in the form of radial profiles
of density and average axial velocity and radial and axial turbu-
lence intensities fof the initial region. It was found that the
presence of heavier Freon-12 caused a decrease in the momentum
transfer as compared to the homogeneous case, thus leading to pre-
servation of the imner stream for a larger downstream distance.

The existence of a concentration potential core was also observed
and the length of this pure Freon=-12 core was shown to depend on
the velocity ratio; the higher the velocity ratio UZ/Ul’ the

shorter the length of the core.

12



1.2 Present Study

The literature survey presented shows that the analytical
studies available used several simplifying assumptions in order to
render the anaiytical model tractable from the mathematicai point
of view. Also, the correlation of the analyses is restricted to’
experimental configurations with very small radius ratio Rl/R
when the effects of the confining walls are insignificant, and to
cases where the inner stream is much faster than the outer stream.
Also, these correlations have been obtained only in the main
region, where similarity of the velocity profiles has been assumed.
The experimental configurations of Leithem, Kultik and Weinstein2
belong to the range of present interest and correlations with their
recent data are obtained in the present analvsis of turbulent confined

jet mixiung.

The flow problem is formulated as a boundary value problem
using the turbulent boundary layer equations, In turbulent mixing
problems however, unlike in the corresponding laminar problem, the
transport properties of the flow do not depend on the component
fluid properties alone, but also on geometric and dynamic factors
of the flow system, Therefore, an eddy viscosity model has been
formulated in order to correlate the analysis with the data obtained
by Leithem, Kulik and Weinstein in the initial region. The equations
describing the flow  are approximated by their finite difference
forms and the solution is obtained by an eﬁplicit numerical scheme.

Numerical stability is ensured by satisfying Karplusz3 stability

13



criterion. The finite difference equations are programmed in

Fortran IV and solved using the IBM 360/40 computer.

The main contributions of this investigation are:

1.

The results provideinformation about tufbulent,
incompressible, heterogeneous coaxial confined jet
mixing where the presence of the wall may not be
neglected. Therefore, the study enables to assess
the mixing phenomena in gas=-core nuclear reactors.
The eddy viscosity model formulated considers both
the density variation due to stratification and the

confining wall effects in the initial region.

14



CHAPTER 2

ANALYSIS

2,1 Ob jective

The turbulent coaxial confined heterogeneous mixing of
incompressible jets is studied analytically in the present work,
The aims of this investigation are:

L, To obtain the velocity and concentration fields in

the initial mixing region of the confined turbulent

jet flow.

2, To either modify the existing models or formulate a
new model for eddy viscosity in order to take into
consideration the effects of stratified flow and

confining walls.

3, To correlate the present analysis with the relevant

experimental data of Leithem, Kulik and Weinstein%

A phenomenological approach is used for the turbulent flow
problem, Therefore, the equatiomns for the mean flow resemble the
corresponding laminar flow equations with the molecular transport
properties replaced by the eddy diffusivities. The analysis follows
along the lines of the laminar analysis of Ref. 1, but will be pre-

sented here in brief for the sake of completeness.,

15



2.2 l Mathematical Model

The jet mixing problem to be studied is represented
mathematically by the boundary layer equations with appropriate
boundary conditions. The use of boundary layer equations may be
supported by the success with which they have been applied in
Ref. 1 in the investigation of laminar confined mixing. Their
application to turbulent jet mixing is justified in References
20 and 24 and is also justified in Chapter 4. The present mathe-
matical model is based on the following assumptions:

1. The boundary layer approximations are valid

2. The flow is steady, isothermal and without body

forces and chemical reaction

3. Incompressible component fluids

The mathematical model is designed to predict the mixing of
two streams as it progresses’&n the entrance region of a confining
pipe of constant cross-section. A typical geometry of the problem
is shown in Fig. 1. The solution is obtained by a finite difference
method with which any types of entrance velocity profile can be used.
The governing equations for the turbulent mixing of two heterogeneous

25,26

non-reacting streams are well documented and are presented next.

16



2,3

2-3.1

in Equations (2) and (3) .

Formulation of Problem in Physical Plane (x.,z)

Governing Differential Equations

~Continuity Equation

'g—r' (prvr) + %;: (prvz) = 0

Momentum Equation

dv ov ov

& —2 _ _8 .10 2
PVr ot + PV, dz ~ dz +r-ar‘ku + evp)r or ]
Diffusion Equation

dw W AW

—L 1 _ lo 1
V. 3¢ +ovZ Sz - T oF [(D12+ em)rp Sc ]

The eddy viscosity €, and eddy diffusivity €

in the next chapter.

17

Their formulation will be discussed

(D

(2)

(3)

(4)

are unknown



The pressure gradieant dp/dz

is calculated using an Equation

of Constraint derived on the basis of the momentum equation and on the

conservation of mass flow rate across any cross section in the flow

region .

Equation of Constraint

1
v2 oz .
z 21 Pp,1
)
MM, | ==+ ==
R 12 ]
1 2
dp _ 1 oI
dz R -J v
I g © z
6 Vz avz L3
TO R troor[Wtesyr
|
2.,3.2 Boundary Conditions
1. At the initial section, z = 0
kl(r) if 0<r < Ry
vz(r,O) =
Ay (1) if R, <r <R
vr(r,O) = 0 if 0<r<R
k3(r) if 0<rc< Ry
o, (r,0) =
)\4(r) if Ry <r <R

18
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dr



2. At the centerline, r = 0

ov

vr(O,z) = 2 1 =0 : 7)
or r=0 or =0
3. At the wall, r =R
- _ ow -
v, (R,2) = vr(R,Z) =_"1 =0 (8)
or =R

Equations (1) through (8), (except for the expressions of
eddy viscosity €, and eddy diffusivity em) complete the formu-
lation of the jet mixing problem. The von Mises transformation

is used in this analysis in order to facilitate the solution

2.4 von Mises Transformation

The stream function is defined by

%)_ = pvzr , ?L = - err (9)
T z

and the inverse transformation is given by
2
. = 2]‘1’ dy (10)
o pvz

On closer examination, Equation (10) reveals that the number of
grid points representing the iunner stream decreases as the ratio of the
mass fluxes of the outer to the inner streams increases. Hence, to

obtain a proper finite difference representation of the inner stream

19



for these large mass flux ratios without unreasonably increasing the

number of steps in ¢ -directiom, the ¢p-transformation is used to

stretch the{ -~coordinate in the region of the inner stream. The
corresponding transformed equations and boundary conditions are

presented next.

2.5 Formulation of Problem in ¢-~Transform Plane (p,z)

2.5.1 Governing Differential Equations

The @-transformation is defined by

1 when plUl/sz2 N 1

2 when plUl/DZUZ << 1

The equations in the von Mises plane correspond to «o = 1.

The inverse p-transformation is defined by

r2 = ZJ(P dep
d
o pv, a%

The Jacobian of this ¢-transformation for ¢ = 2 is given by

which is unbounded at @ = O, Therefore, particular caution needs to
be observed while using the @-transformation when ¢ = 0 which occurs

at the duct centerline.

20
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Equations (2), (3) and (5)

ov ov
2z __.1 dp dp9d dp _z
S, = ov_ dz + 3y 39 [(u + e p)rpv, b S ]
aw - Aw.
1 _ o 2 dp 1
oz %\%&p [(D12+€m)rpvzrisl§6cp ]
=pv T %ﬁ‘%; (ov,)
¢ o N
e _ L + 1| _"p,1 " Pp,2
dz 3 Vz dz ' 2
J b % wm, L4 o2
o 2 dp 12 | M, "M,
S dy
ma 2 @avz
TP S (b + e plrov, ay 5

The continuity equation (1) is satisfied identically by the

definition of the stream function.

however, the radial velocity v.

transform to

For variable density flows,

(13)

(14)

(15)

can be evaluated from Equation (1)

by solving it for B(rvr)/ar o Thus, the radial velocity appearing
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in Equation (15) is evaluated from the equation of continuity in the

transformed plane.

dv v
dp. O _ Ve dp 1 1 %
o o CV T TV WS Thv, 0 7o (16)

The expression for density, Equation (4), and the expressions
for eddy viscosity €y and eddy diffusivity € formulated in the

next chapter remain unaffected by the transformation.

2.5.2 Boundary Conditions

The transformed boundary conditions are

1. At the initial section, z = 0

LG if 0<o9px?y
vz(cp,O) =
?\Z(cp) if 2, <9 < )
Vr(¢,0) = 0 if 0<op<? (17
)\3(({)) if O0<o= @1
w, (p,0) =
Ay Gp) if 8o, <p<@
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2 At the centerline, w = 0

sz aml ’
v _(0,z) = <~ = T = 0 (18)
3. At the wall, ¢ = &
a('01
Q’ = @’ = e—— = Q0 19
Vz( z) Vr( Z) acp LP=<§ (19

2.5.3 Centerline Equations

Since the p-transformation has an unbounded Jacobian at

¢ = 0, suitable limiting processes, together with L'Hospital's rule, are

utilized in order to reduce Equations (13) and (14) to the following

equations at the centerline¢ =0.

2
EZE = oL dp (u + ) ° z (20)
oz PV, dz HoT eGP a¢2
an Bzwl
Sz T O Fede 5 (21

Thus the flow problem is represented by Equations (12)

through (16) (together with Equatioms (20) and (21) for the centerline)
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and the boundary conditions (17) through (19). The expressions for
eddy viscosity €, and eddy diffusivity € have yet to be

formulated.

2.6 Method of Solution

A forward marching all-explicit numerical method is used in
this analysis. Accordingly, for the transverse derivatives, central
differences are used in the interior of the duct and backward differences
are qsed at the duct wall. Forward differences are used for the axial
derivatives everywhere except in the continuity equation wherein back-
ward differences are used for the axial derivatives. Substitution
of these finite differences in the governing equations leads to linear
explicit finite difference equations that are stable under certain
conditions. These stability conditions are obtained by using the
criterion developed by Karplusg3 These conditions are only realizable
for non-negative axial velocities and are

For momentum equation (13)

1. Ap is not limited from stability considerations and
is selected from the required resolution and the

accuracy of the flow problem.

2. Az < 1 1 1 2
7 2
2(vtoe) 2,2 [@] 2 Ixp (22)
z
dy m,n
For the diffusion equation (14)
1. There is no restriction on Ay
N
Sc,t 1 1 2
2. 82 < 1 9G+e) 22 2 fep (23)
virpv, [gg]
dap m,n
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Here, m and n denote the transverse and the axial coordinates,
respectively.

The stability conditions of Equations (20) and (21) are less
stringent than conditions (22) and (23). The more restrictive of
conditions (22) and (23)is utilized in the numerical solution.
Equations (153), (16), the expression for demnsity, Equation(4) and
the expressions for eddy viscosity and eddy diffusivity are

unconditionally stable.

The discussion and the development of the turbulent shear

model are presented in the next chapter.
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CHAPTER 3

DISCUSSION ON EDDY VISCOSITY

3.1 Introduction

In order to obtain a solution of the finite difference
equations presented in Chapter 2, it is necessary to establish
suitable expressions for the eddy viscosity €, and eddy diffusivity
€ in terms of known quantities., Unfortunately, these turbulent
transport coefficients are not fluid properties, as are their
laminar counterparts, but they are parameters that depend on the
fluid motion, e.g. the level of turbulence, velocity gradient and
density gradient. Since turbulent flow is characterized by random
fluctuations, the derivation of accurate theoretical expressions
for the eddy diffuéivities requires a statistical analysis,
However, the statistical approach has not proved practical so
far%7 and consequently, one must rely on a semi-empirical approach
for determining expressions relating the eddy diffusivities to the
flow properties, The derivation of these expressions for the pre-
sent analysis of confined mixing is based on the results available
for unconfined jet mixing. Hence, the relevant turbulent shear
models for free jet mixing are first presented., Further detailed
discussion on these and other turbulent jet mixing models may be

obtained from References 28, 29, 30 and 31.
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3.2 Classical Shear Models for Unconfined Jet Mixing

The famous mixing length theory for turbulent shear was
formulated by Prandtl in 1925, This theory postulates that the
mean value of the fluctuating velocity component in a turbulent
flow is equal to the product of the local mean velocity gradient
and a characteristic mixiﬁg length 4. The mixing length is a
distance in the flow field such that a fluid element conserves its
axial velocity as it moves across this distance. The mixing length
4 1is assumed to be proportionzl to the local width b of the mixing
layer, i.e.,, £ « b. Also, 4 1is assumed to be constant across the
mixing layer. Thus, Prandtl's mixing length theory gives the
following relation for the turbulent shear stress, or the Reynolds

stress, in the axial direction

22 | 9, | %
- - | g | = —_— —
T A pe b or or (24)
where ¢ is an empirical constant,

b 1is the width of the mixing layer,

v_ is the mean axial velocity,

and v, v, are the local fluctuating components of the

axial and the radial velocity, respectively,

Using the concept of eddy viscosity in Equation (24), the expression
for the eddy viscosity becomes

ov
Z

or

2.2

€ = ¢ b (25)
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Thus, Prandtl's mixing length theory yields an eddy viscosity
ov '

—

or

which varies with across the mixing layer.

Based on a similar mixing length concept, Taylor derived a
vorticity transport theory wherein the vorticity of a fluid element
is assumed to be conserved across the mixing length. 1In Taylor's
theory, as well as in Prandtl's, the eddy length scale was assumed
to be much smaller than the local width of the mixing layer.,

However, Taylor's theory has been used much less frequently because
of its complexity in all but the simplest flows., It must also be
noted that for two-dimensional mixing, the vorticity theory results
in the same expression for turbulent shear as obtained from Prandtl’s

mixing length theory.

In 1942, Prandtl proposed another model for the turbulent

eddy viscosity, based on the assumption that the eddy viscosity e

A
is related to the local mean velocity gradient across the mixing
layer, This formulation implies that the turbulent eddy scale is
of the same order as the width of the mixing zone and yields the
following expression for the eddy viscosity

v T kb(Vz,,max - vz,min) (26)
where k is an empirical constant,

v s V . are the maximum and the minimum axial
Z,max z,min
velocities respectively, in the

mixing layer.
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The eddy viscosity is assumed to be constant across the mixing
layer, i.e. dependent upon the axial coordinate only. 1In fact,
for an incompressible circular jet exhausting into a quiescent
atmosphere, it has been shown that, asymptotically, the width of
the jet is linearly proportional to the streamwise coordinate z,
whereas the centerline velocity is inversely proportional to =z,
Therefore, for such a system, Equation (26) yields an eddy

viscosity which is comnstant for the entire flow field,

This model for the eddy viscosity, Equation (26), has
been widely applied to a variety of free mixing problems because
of its mathematical simplicity and the results it yields agree
satisfactorily with experimental data for several flow configura-
tions, It, therefore, forms the basis for most eddy viscosity
models existing in the literature, and is used for a particular
flow field by appropriately including the effects that may be of

significant interest in that case,

3.3 Modifications of Classical Model

For the present problem, it was necessary to account for

the following:

1. Effect of a moving external (secondary) stream
2, The case of streams with equal velocities
3. Effect of density difference between the streams

4, Effect of the confining walls
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These effects may be considered either individually, by including
ﬁhe corresponding terms in the eddy viscosity expression, or
collectively, by suitable modification of the empirical constant k
appeéring in the €, model, Equation (26). While no information is
available regarding the effect of the confining walls, efforts to
include the remaining three effects individually have been made by
several investigators and have resulted in various analytical models
for the eddy viscosity. However, it cannot be assumed that the eddy
viscosity model which is suitable for the present problem will
result from a simple superposition of these individual effects,

The purpose of the discussion in the remainder of this section is,
then, mainly to indicate qualitatively the effects of these
additional factors on the formulation of the eddy viscosity model.
The final aim, of course, is to formulate an expression for the

eddy kinematic viscosity coefficient that can adequately correlate
the present analysis with the experimental data of Reference 2 for

confined mixing.

3.3.1 Effect of a Moving External Stream

From experiments with unconfined mixing of moving streams
of identical composition, Forstall and Shapiro32 deduced that the
presence of a moving secondary stream causes a decrease in the
rate of spread of the central jet, Measured in terms of the half

radius r1/2*, the spreading of the jet was no longer linear with

* The half radius r is the radius at which the local axial

velocity v, is eJuil to 0°5(vzamax + Vz,min)'
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the downstream distance. In fact, it was shown that, to a good

approximation, the growth of the half radius may be given by

l-U2/U1

r z 27)

1/2

Furthermore, for the centerline velocity decay, it was found that
Z,C 2 ~ 1 (28)
z
Substitution of Equations (27) and (28) into (26) reveals that,
for the case of a moving secondary stream, €, must depend on the

axial coordinate =z,

3.3.2 The Case of Streams with Equal Velocities

The various eddy viscosity models available today are the result
of attempts by several investigators to include the case of equal
stream velocities within the framework of Prandtl's original
hypothesis for free turbulent flow., Prandtl's classical model,
as given by Equation (26), leads to the obvious realization that
e, = 0 when vz,max = vz,min » 8o that two streams having equal
velocities flow along as segregated, without mixing. This implica-
tion has been demonstrated to be incorrect by the results of the
experiments of Forstall and Shapiro32 and Alpinieri%3 Recognizing

this disparity between Prandtl's model and the experimental observa-

tions, Ferri et al34 suggested a new expression for the eddy viscosity
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(be ), = 0.025 1, [Gv) . = (ov) (29)

z’ max z’min ]

This expression was obtained by extensive correlations of free jet
data, It was concluded that the effect of a density difference in
the flow field on the form of the eddy viscosity may be accounted
for by the inclusion of a density term as in Equation (29). This
form for €y eliminates the objection to Prandtl's model,
Equation (26), when Y, max = vz,min’ but clearly, it results in

a similar difficulty when (pvz)max = (pv ) Consequently, it

z’min’
shows little value for general application, In order to circumvent

such anomalies, Alpinieri34 considered the eddy viscosity €, to

be proportional to the sum of the mass flux and the momentum flux,

and proposed the following relation for €y

(pe_dc T P,V o,U
Y— = 0,025 —L2 [ Lzae , 220 ] (30)
°1°1™1 1 L opU

It may be mentioned here that Equations (29) and (30) have been used

for extensive correlations but only in the similarity region of a carbon

dioxide=air system and a hydrogen-air system with R1/R = 0,25 and

Ul/UZ ranging between 0,47 and 1.25 while U, = 650 ft/sec, No

2
statement may be made regarding their application to other jet mixing
configurations. In fact, this is true for all available expressions

for €y because of the lack of complete and accurate data used in

studying any eddy viscosity model,
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Furthermore, the situation that Equations (29) and (30) may
both be used to correlate the same experimental data is solved by the
results obtained by Ragsdale and Edwards35 in their analytical and
experimental study with an aire<bromine system., In their analytical
study, various expressions for eddy viscosity were compared on a
consistent basis. It was concluded that modifications of Prandtl's
hypothesis for turbulent shear flow that introduce mass flux or
momentum flux or both, rather than velocities, produce expressions
whose differences are more apparent than real. It was shown that
these various expressions predict essentially the same eddy vis-
cosity as long as they are applied only within the range of conditions
for which they have been experimentally verified. Ragsdale and
Edwards explained that this is perhaps because the initial turbu-
lence present in the streams contributes éignificantly to the co-
axial mixing process and may dominate the situation,; for nearly

equal stream velocities,

3.3.3 Effect of Density Difference between the Two Streams

Density differences may arise within the jet mixing region
either due to compressibility effects, as in the case cf heated jets
and supersonic flows, or due to jets of different composition.
Experimental studies of a jet exhausting into a quiescent stream
of different density were performed by Corrsin and Uberoi36 using
heated jets and by Keagy and Weller37 using jets of different

composition. In both cases, the asymptotic decay of the centerline
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velocity fits a z-1 power law reasonably well., Also, the linearity
of the half radius rl/2 With the axial coordinate =z, as observed
in constant density mixing, is still valid. However, the rate of
linear spread depends strongly on the difference between the den-
sities of the two streams, In fact, a decrease in the jet density
with respect to that of the secondary stream causes an increase in
the rate of spreading of the jet., Therefore, it is seen that for
unconfined mixing, a density difference between the two streams
produces no additional axial variation in the eddy viscosity €y

besides a change in the value of the empirical constant in Prandtl's

formulation, Equation (26).

The radial variation introduced in the eddy viscosity €

by a density difference in the mixing streams was accounted for by
Ferri et al34 by using €, as given by Equation (29). Ting and
Libby38 postulated the following relation between the eddy viscosity

for constant density mixing and that for variable density axisym-

metric flows

2

I P r

- oy 1_ o_
e, = €, ( 5 ) rz f 2 o r dr (31)

o
where €, is the eddy viscosity for constant density flows and

Py is a reference density,

As seen from Equation (31), the transformation of Ting and

Libby is essentially a conversion of the constant density eddy

¥

viscosity €, to one applicable for flows with density variations
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either due to compressibility or stratification., While this

transformation admits possible practical application, no definite
* .

form of €, °Ff P, is suggested and the results vary depending

* .
on the forms of €, and Py used,

It is seen from the above discussion that several attempts
have been made in order to modify Prandtl's classical model for
free turbulent shear in order to study variations of the free jet
mixing problem. However, not one of them includes all of the effects
that are significant in the present problem. The following section
discusses the eddy viscosity model used in the present analysis to

include the effects listed in Section 3.3.

3.4 Eddy Viscosity Model Proposed for Present Analysis

After suitable redefinition of the constant in Prandcl's

classical model, the eddy viscosity expression becomes

[ =

v + v
Z ,max
v

Z,min ] z (32)
2
4o

where ¢ 1is a non-dimensional correlating parameter. This form
, 29 39

of the eddy viscosity €, Wwas used by Pai and Bauer for

unconfined jet mixing. For an incompressible free jet exhausting

into a quiescent atmosphere, o was found to be twelvez.9 For two

dimensional mixing of two moving streams, Korst40 has proposed

the values of o in terms of velocity ratio of the two streams,
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Equation (32) is applicable for the case with a moving
secondary stream, Also, this form of the eddy viscosity expression
does not display the objection raised for Prandtl's original model

for the case of equal stream velocities,

Equation (32) will be used for the eddy viscosity in the
present analysis of confined heterogeneous mixing. The two
important effects that remain to be included in the proposed
model are the effects due to density variation in the streams
and the effects of the confining walls, These are jointly accounted
for by a suitable radial variation in the parameter ¢ according

to the following considerations,

The region of interest for the present analysis is the
initial mixing region. In this region, the value of €, required
near the central axis of the jet should be approximately that for
unconfined mixing and the value of ¢ at the centerline may be
estimated from Korst's40 results for ¢. Near the interface of
the inner and the outer streams, mixing is enhanced by the large
gradients of velocity and density prevailing here. Therefore,
the value of the eddy viscosity e, near the jet interface must
be larger than its value at the centerline. Further, at the edge
of the mixing zone, the shear decreases to zero, and, in the
viscous sublayer at the confining wall, the Reynolds stress is
zero and the molecular kinematic viscosity dominates. Thus, the

value of €, should decrease almost to zero at the wall.,
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These considerations show clearly that, for the present
problem, the eddy viscosity must vary radially across the cross=~
section of the confining pipe. Then, from Equation (32), it
follows that the parameter ¢ also varies with the radial coor-
dinate. The approximate shapes suitable for €, and ¢ are
shown in Figures 2a and 2b respectively., This shape of g may
be represented by an expression of the form

r/R

1€ cos T §: + A2 (33)

where A1 and A2 are such that their sum is the value of o

as predicted by Korst40 for specified velocity ratio U2/U1.

In order to maintain ¢ maximum at the wall, the cosine
function was written in the form
(34)

cos 17 for

1

-

HW IH
\
[t

This also yields minimum ¢ near the jet interface, as

desired,

Thus, Equation (32), together with Equation (33) for o,
comprises the model proposed for the eddy viscosity € 0 It still
remains to formulate an expression for the eddy diffusivity € in

order to complete the set of equations presented in Chapter 2.
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3.5 Some Remarks on the Turbulent Schmidt Number NSc c
9

and the Eddy Diffusivity e

J118

In early analyses of mixing problems, it was often assumed

that the turbulent Schmidt number NSc i 1,0, an assumption
b4

which simplifies the governing equations considerably. However,

recent experiments indicate that NS may differ significantly

c,t
from unity., Further, the experimental data of Forstall and
Shapiro32 show that NSc,t remains constant at approximately
0.7 throughout the mixing region, so that the eddy diffusivity
e is merely a constant times the eddy viscosity €,° For
gaseous components in binary mixing, the values cf NSc,t most
frequently cited vary between 0.5 and 1.2, In the present work,
NSc,t is considered as a parameter and retained constant in the

entire mixing region. Using suitable values for then

NSc,t
yields the values for € from calculated values of € e
This completes the formulation of the boundary value
problem, The solution is obtained by a finite difference method
developed in Ref. 1, The results are presented and discussed in

the next chapter,
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The analysis presented in Chapter 2, together with the eddy
viscosity formulation proposed in Chapter 3, is used to obtain the
flow field in a confined turbulent heterogeneous jet mixing system.
The experimental data of Leithem, Kulik and Weipstein2 were used to
correlate the present analytical results and thereby arrive at
appropriate values of the parameters in the expression for g.
Since the analysis uses the boundary layer equations, correlations
were made only for the cases where U2/U1 and pl/p2 had values
such that the flow may be adequately described by the turbulent
boundary layer equations. Accordingly, four configurations of
confined jet mixing were investigated. The values of the para-

meters for these four cases are summarized in Table I.

It may be appropriate at this stage to reflect briefly
upon the validity of the boundary layer equations for confined
mixing studies. Comparison of the laminar analysis with the con=-

; 41 ] . .
centration data of Wood is shown in Fig. 3. The experimental
measurements were made for an ethylene-nitrogen system

(pl/p2 *1.0) with U2/U1 = 1.18 and Rl/R = 0.563.
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Table I

Confined Jet Flow Systems

Case U,/U

I 4.9 4.2 0.46 1.666 0.915 0.7
II 9.5 4.2 0.46 2.260 1.762 0.7
IIT 13.8 4.2 0.46 3.290 2.570 0.7
v 5.8 1.0 0.46 5.800 6.700 1.0

Also, the non-dimensional centerline velocity is compared

(Fig. 4) with the corresponding solution42 of the Navier Stokes
equations for the homogeneous cases with Rl/R = 0,563 and
U2/Ul = 4,0, 3.0 and 2.0 As seen from Fig. 4, the deviation
between the two solutions is limited to a small downstream
distance; also, the agreement improves as the velocity ratio

UZ/Ul is decreased.

For the flow conditions in Table I, the consistency of
the boundary layer equations was also checked by calculating
the second order derivatives of the axial velocity v, and the

mass fraction wl. The axial derivatives were at least three

* Npe,1 and Npe 2 are based on the molecular viscosity for Freon
and air respectively, since the experimental data were taken
with a Freon=-air system for the heterogeneous cases and with
an air=-air system for the homogeneous case.
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. orders of magnitude smaller than the corresponding transverse derivatives.
Also, the radial velocity profiles showed only a low net radial flow.
Similar checks were used by Weinstein and Todd43 in order to show the
consistency of the boundary layer edquations for laminar unconfined mix-
ing of streams with velocity ratio UZ/Ul = 100 and density ratio
pl/p2 = 100 which correspond to Uzplelpl = 1. It must be mentioned
here that, for a given radius ratio Rl/R’ as the mass flux ratio
U2p2/Ulpl increases, the radial velocities in the initial region increase.
For Case IV with U2p2/Ulp1 = 5.8, the radial velocities approach the
same order of magnitude as the axial velocities, so that Case IV is

approximately the limit of the range of validity of the present analysis.

Before discussing the results presented, it must be mentioned that
attempts. were also made to analyse the present problem using Ting and
Libby's expression for eddy viscosity, Equation (31), as well as
Alpinieri's formulation, Equation (30) for €, It was found that the

half radius appearing in these expressions for €, behaves

t1/2
quite differently for confined mixing under the present flow conditions

(U2 >U R1 ~ 0.5R) as compared to free jet mixing with U1 > U2.

1°
In fact, the conventional definition of the half-radius yields rl/2
= 0 beyond a certain axial distance 2z, so that Equations (30) and (31)
predict €, = 0 for the region downstream of this value of =z. This
behavior of r1/2, which may be due to the global continuity of the

flow and the effect of the boundary layer developing at the confining walls,

raises the question of the validity of using rl/2 in the eddy viscosity
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models for confined jet mixing. An alternate measure of the jet
width, as for example one based on the mass fraction rather than
velocities, may perhaps be used more adequately in place of the

half radius r in Equations (30) and (31).

1/2
Further efforts were directed to analyse the present
problem using only the proposed model for the eddy viscosity,
Equation (32), This model, with constant ¢ was used success-
fully by Emmonszo to correlate his analysis with the experimental
data of Shapiro and Forstall32 in the similarity region of a homo-
geneous mixing system with Rl/R = 1/16 and U2/U1 between 0.2
and 0.75. In the present analysis of heterogeneous mixing con-
figurations, with Rl/R = 0,46 and u, > Ul’ o is a radially
varying non-dimensional parameter. The idea of varying the
empirical constant in an eddy viscosity model was also used by
Donaldson and Gray44 in their investigation of unconfined hetero-
geneous mixing of compressible streams. Starting with Prandtl's
classical model, Equation (26), for comnstant density mixing,

Donaldson and Gray used a continuously varying k in order to

correlate their analysis with experimental data.

4.2 Discussion of Present Results

Figures 5 through 8 show the comparison of the velocity and
the density profiles of the present results with experimental data
for the four cases listed in Table I. For the homogeneous Case IV

with pl/p2 = 1.0, the density profiles are not presented because
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the density in this case is everywhere uniform. The velocity
profiles used at the inlet section z = 0 were those obtained in
the experiments. It must be noted here that calculation of mass
flow rate using the experimental velocity and density profiles
showed that the total mass flow rate in each case varied by about

10 to 15 percent in the initial regiom.

The results are presented for several downstream distances,
and with references to Fig. 1, they are for the initial region.
It can be seen from these results that an increase in the velocity
ratio U2/Ul leads to faster mixing and development of the flow.
Similar effect is also observed as pl/p2 is reduced from 4.2 in
Case I to pl/p2 = 1.0 in Case IV. The ratios UZ/Ul and pl/p2

were varied by essentially varying U and Py respectively.

1
In the confined turbulent mixing process, the static pressure
is expected to increase with downstream distance z. Also, the
viscous effects at the confining wall cause a decrease in the
pressure with increasing axial distance z. The result is a
negative or a positive axial pressure gradient dp/dz depending
on whether the viscous effects at the wall dominate or the effects
of the mixing process are more predominant. The variation of the
normalized axial pressure gradient is presented in Fig. 9 for the
four cases investigated. The axial pressure gradient dp/dz in
each case has been normalized with respect to its corresponding
value for fully developed turbulent pipe flow. Negative values of
normalized pressure gradient indicate positive values of the actual

pressure gradient dp/dz since the normalizing value of the
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pressure gradient is negative. Thus, it is seen from Fig. 9
that positive pressure gradient prevails in all the four cases
studied, The magnitude of this adverse dp/dz decreases with

decrease in the ratio U2p2/Ulp The presence of a positive

1
pressure gradient leads to a reduction of the axial velocity

v, particularly near the centerline. The value of the minimum
centerline axial velocity vz’C decreases with increase in the
velocity ratio UZ/U1° For some value of U2/U1, the axial
velocity will approach éero and furthgr increase in U2/U1 will
yield negative axial velocities. This is the onset of recircu-
lation phenomenon wherein the entrainment capacity of the faster
moving outer stream exceeds the amount of fluid supplied by the
low velocity inner stream. The outer stream then recirculates
some of its own fluid to meet its entrainment requirements.

The present analysis js no longer be valid as the parameters

of the problem approach the wvalues for which recirculation occurs.
It must be mentioned here that for Case III which has the maximum
velocity ratio investigated, U2/U1 = 13.8, the minimum non-

dimensional centerline axial velocity v, is approximately

1
b
0.04, Therefore, the largest value of U2/Ul = 13.8 presented

in Table I, where pl/p2 = 4.2, is approximately the maximum velocity

ratio U2/U1 for which the present analysis is valid.

Figure 10 presents the typical radial variations of €y
and Pe,, for the cases studied. The increase of eddy viscosity

€, with axial distance z 1is in conformity with the experimental
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results of Boehmanlf5 It must be. reported here that, for the

present analysis, attempﬁs were also made to replace the variation
of €y with =z by an axial variation of the form z" where
n < 1. This would increase the value of the eddy viscosity IR
for z <1 and decrease it for z > 1, The corresponding results

obtained showed.no improvement, so that the variation of €, with z

. . n
was retained as in Equation (32). However, the attempts to use z ,

‘m < 1, lead the author to believe that better correlation may be

obtained by shifting the crossing point of the zn, n < 1, curve
with the z1 line from the value =z =1 to some value 2z < 1.
(See sketch shown below.) It may be worth investigating the
axial variation of €y in the form (z/L)n where n < 1 and
the constant L depends on the exponent n and on the value of
1

z where the crossing point of the (z/L)" curve with the =z

line is desired to be located.




The sharp decrease in the eddy viscosity values on the right of the
peak of the €, curves in Fig. 10 corresponds to the region where the
velocity profiles show a plateau and where the Reynolds stress tends
towards zero. This sharp decrease manifests itself through the-positive
curvature of the €, curves in this region. On the other hand, in the
same region, the e, curve for fully developed turbulent pipe flow is
of negative curvature. This disagreement should not be surprising since
the eddy viscosity formulation used in the present analysis was intended
for the initial mixing region only. It is.also interesting to note that
the values of €, in the mixing region are very much larger than those
for single pipe flow. 1In Fig. 10, the €, curves for the region between

r/R, = 2.00 and the wall are not shown, since the values there are very

1
small compared to the peak values.

The dynamic eddy viscosity pe, is found to be a relatively weak
function of the transverse coordinate r, so that pe, may be considered
to depend only on the axial distance =z, This was also observed by
Alpinieri33 to be true for the correlation of his analysis with his
experimental data for a carbon dioxide-air system and a hydrogen-air
system with Rl/R = 0.25 and U1/U2 between 0.47 and 1.25, It must be
noted here that, in the governing differential equations presented in
Chapter 2, the coefficients of the molecular viécosity p and the molecu-

lar diffusivity D were written separately from the eddy viscosity pe,,

12
and the eddy diffusivity pem, respectively. Therefore, the eddy viscosity
€ and the eddy diffusivity € must approach zero at the wall. To cir-
cumvent this situation the sum of (u + pev) was replaced by an equivalent

total of pe, and (D12 + em) was replaced by pev/N Consequently,

Sc,t’
the eddy viscosity ¢, was required to decrease to the molecular viscos-

ity value near the wall. The corresponding value required for ¢ was
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obtained by using a different value Ai in the region near the wall for
the coefficient A1 of the exponential cosine function. Matching the
values of o near the jet interface r/R1 = 1.0 yields the following

expression for o for r/R1 > 1.0.

R__r_
r/R R R
- 1 [} I 1 1 _
o = e A1 + A1 cos 11 R ) A1 + A2
R
for 1 << R (35)
1 1

Thus, the non-dimensional parameter o appearing in Equation (32) for the

eddy viscosity €, is given by Equation (33) for O < %— <1 and by
1
Equation (35) for 1 < %— < %— The values of the parameters in these
1 1

expressions for o are obtained from the correlations for the four cases

of Table 1 and are shown in Fig. 11. The variation of these parameters with
mass flux ratio U2p2/Ulp1 leads to the following interesting interpretation
for the expression used for o. The constant part A2 of o, may be con-
sidered to correspond to unconfined mixing, whereas the variable part of «
accounts for the confined mixing. As the velocity ratio UZ/UI increases,
but remains below the value for which recirculation occurs, the effect of

the variable part in ¢ diminishes and the constant part A2 dominates and

approaches the value of 12 established for free jet mixing with a quiescent

atmosphere.

From Equation (33) and the results presented in Fig. 11, it is also
seen that the prescnce of a moving secondary stream requires a larger mean
. } o S . , 40
value of 0. This result for confined mixing is in accordance with Korst's
experimental results for two-dimensional free mixing. Further, as the veloc-
ity ratio U2/Ul increases or the density ratio pl/p2 decreases, the mean
value of 0 decreases. Similar conclusions have been also obtained from

the experiments of Baker and Weinstein46 and Korst[f0
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As seen from Table I, the radius ratio Rl/R is equal to 0.46 for
the four cases studied. Therefore, it must be noted that the present
formulation for o has been checked to be appropriate for confined jet

mixing with this radius ratio only.

As mentioned in Section 3.4, a constant value of 0.7 was used for

the turbulent Schmidt number NSc ‘ in the present analysis. Results
b
were also obtained with N = 0.6 and N = 0.8. It was found
Sc,t Sc,t

that the radial profiles of the axial velocities were insensitive to
these small changes in the value of the turbulent Schmidt number.
Similar observations have also been reported by Alpinieri:?3 In the

present investigation, however, the variations in the density profiles

due to changes in N were not negligible. The results for N

Sc,t Sc,t

other than 0.7 have not been presented.

It must be recalled that, for the present study, experimental data
were available in the initial region only; hence, the analysis was
correlated with experiment in this region only. However, it may be
interesting to see the results of the analysis in the main region far
downstream. These are presented in Fig. 12 for the four cases inves-
tigated. The corresponding fully developed theoretical velocity profile
for each case is also shown in the same figure. Of course, no deduc-
tions may be made on the basis of these results. Experimental data in
the main region of confined mixing are needed in order to make any
conclusive statements regarding the use of the present eddy viscosity

formulation iun this region.
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CHAPTER 5

CONCLUSION

Turbulent heterogeneous mixing in the initial region of
circular axisymmetric jets has been studied. An isothermal
non-reacting binary system was considered and it consisted of
a slow moving central jet of a heavy gas and a fast moving
annular stream of a light gas. Such a system is characteristic
of a gas core nuclear rocket. Therefore, the results obtained
in the present investigation provide useful information about

the flow phenomena occurring in a gaseous nuclear rocket.

The flow problem was formulated as a boundary value problem
using the turbulent boundary layer equations. A phenomenological
model was used for the turbulent kinematic eddy viscosity €,

and the eddy diffusivity e, was obtained therefrom by consider-

ing the turbulent Schmidt number N to be a parameter of the

Sc,t
problem. The solution of the flow problem was obtained using an

explicit finite difference scheme. The numerical stability of this

scheme was ensured by satisfying Karplus' stability criterionm.

The phenomenological model used for the eddy viscosity €y
contains an empirical correlating parameter o. For unconfined
mixing of uniform density streams, the parameter ¢ has been

shown to be constant throughout the flow field, with its value

depending only on the entrance velocity ratio U2/U1 %O For the
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present problem of confined heterogeneous mixing, the parameter ¢
was varied radially. While the shape of the radial profile of this
parameter was arrived at by consideration of mixing as it occurs

in the initial region of the flow field, its value was determined
b& correlation of the anaiytical results with available experi-
mental data for the flow systems of present interest. Results

were obgained for the four confined jet mixing configurations
listed in Table I, Chapter 4, and are correlated with the corre=-
sponding experimental data of-Reference 2. These correlations

lead to the following conclusions.

As the velocity ratio U2/Ul increases, or the demsity
ratio pl/p2 decreases, mixing becomes faster, thereby leading
to the presence of positive axial pressure gradient dp/dz in
the initial mixing region. The magnitude of the positive pressure
gradient dp/dz increases with increase in the velocity ratio

U2/Ul or decrease in the density ratio pl/pz.

For the range of parameters investigated, a possible
formulation of the kinematic eddy viscosity coefficient e, is
given by Equation (32), where the correlating parameter o is
the sum of a constant quantity and a radially varying quantity.
As the velocity ratio U2/U1 increases, or the density ratio
pllp2 decreases, the radially varying part in the parameter o
diminishes and the constant part dominates. The use of such
radial variation of the parameter o and the satisfactory corre-

lations thereby obtained, show that for confined heterogeneous
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mixing, the kinematic eddy viscosity €, varies significantly
in the transverse direction. Nevertheless, the dynamic eddy
viscosity Pe,, does not exhibit strong radial variation. Similar

observations have also been reported in References 33 and 47.

The turbulent Schmidt number NSc,t = 0.7 was used
throughout the analysis (except for the homogeneous case, with
Py =Py where NSc,t = 1.0). Results obtained'with NSc,t = 0.6
and 0.8 showed that a small variation of the turbulent Schmidt
number NSc,t causes no significant changes in the velocity
profiles, although the corresponding changes in the density near

the jet axis are not negligible,

Finally, it must be mentioned that experimental data were
available only for a limited number of jet mixing configurations
with parameters having values within the range of present interest.
For example, as seen in Table I, data were available for radius
ratios R1/R = 0,46 only. If the experimental data with differ-
ent radius ratios were available, correlation with the analysis
would enable the constant and the varying parameters comprising
o to be characterized in terms of some suitable grouping of
the ratios U2/U1, pl/pz, and Rl/R' Additional experimental
results are necessary in order to explore further the versatility
of the analysis developed, as well as to substantiate the con-

clusions obtained in the present investigation.
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